MATH 202 A - Problem Set 5 Walid

نویسنده

  • Walid Krichene
چکیده

(5.1) The contraction mapping principle Let 0 ≤ r < 1. Let (X, d) be a nonempty metric space and f : X → X be a function that is a strict contraction, that is, for all x, y ∈ X, d(f(x), f(y)) ≤ rd(x, y). Then f has a unique fixed point. proof Existence of a fixed point: Let x0 ∈ X, and define the sequence (xn)n by: for all n ∈ N, xn+1 = f(xn). Then (xn)n is a Cauchy sequence: first, we have by induction on n ∈ N d(xn+1, xn) ≤ rd(x1, x0) this is true for n = 0, and if it is true for n, then d(xn+2, xn+1) = d(f(xn+1), f(xn)) ≤ rd(xn+1, xn) ≤ r.rd(x1, x0), which completes the induction. Now we have for all n ∈ N and k ∈ N,

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MATH 202 B - Problem Set 10

(10.1) Let k ∈ N, and let X = C k ([0, 1] d) to be the set of all functions f ∈ C 0 ([0, 1] d) such that for all α ∈ ∆ k , f (α) = ∂f ∂x α 1 1 ...∂x α d d exists and is continuous on (0, 1) d , and extends continuously on [0, 1] d. Here

متن کامل

MATH 202 A - Problem Set 13 Walid

1. Let z ∈ R, and consider the function fz : R→ R x 7→ x+ z We have fz is Borel-measurable since for all c ∈ R, {x ∈ R|fz(x) ≤ c} = {x ∈ R|x+ z ≤ c} = (−∞, c− z) ∈ B. We also observe that if E ⊆ R, then f−1 z (E) = {x ∈ R|x + z ∈ E} = {−z + (x + z)|x + z ∈ E} = −z + E. Thus we have: if E is a Borel set, then f−1 −y (E) = y + E is a Borel set. Conversely, if y + E is a Borel set, then −y + (y + ...

متن کامل

MATH 202 B - Problem Set 2

we have by construction μ(En) = an. An important observation is that a subset of consecutive intervals En, En+1, . . . , En+k are either pairwise disjoint, or they cover the whole interval [0, 1]. Now for all n, let fn = 1En . Then we have • ‖fn‖1 = ∫ X |1En |dμ = μ(En) = an. • for all x ∈ [0, 1], (fn(x))n does not converge. Indeed, if we suppose by contradiction that (fn(x))n converges for som...

متن کامل

MATH 202 A - Problem Set 4

(4.1) Let E,F be nonempty subsets of R, E is compact and F is closed. Then there exist (e, f) ∈ E ×F such that d(E,F ) = d(e, f). proof Let α = d(E,F ) = inf(x,y)∈E×F d(x, y) be the distance between the two sets. Let > 0, and let x0 be a given element of E. Since E is compact, it is in particular bounded, and there exists r > 0 such that E ⊂ B(r, x0). Now consider the closed ball B(r + α+ , x0)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012